If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2-18=10r
We move all terms to the left:
3r^2-18-(10r)=0
a = 3; b = -10; c = -18;
Δ = b2-4ac
Δ = -102-4·3·(-18)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{79}}{2*3}=\frac{10-2\sqrt{79}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{79}}{2*3}=\frac{10+2\sqrt{79}}{6} $
| 7+x/2=12 | | 2x^2+34x-189=0 | | 2p^2-128=0 | | 99=3x^2+15 | | 25+x=87 | | 4x-25+75=360 | | 5y/2-9=2y/3=2 | | 103=-8x+23 | | 96+x+57=180 | | x-9+91=180 | | x-19+x+19=180 | | 64^(2x-2)=4^2 | | (19-5i)-(7+2i)=0 | | 64^2x-2=4^2 | | 35+x=70 | | 6y=5y-9 | | 6(x-4)=156/13 | | 84-p=109 | | 12f+15=5 | | c=200/10 | | x+23°=x+54° | | 3n+10=2n+14 | | x^=2x+99 | | 2x+4+16x+20=180 | | p*36=81 | | 33-x=2(x+6) | | 200=c/10 | | 2/3+x=1/5 | | n-25=54 | | 8(3x-8)=23x+8 | | 0=-15x^2+52x-32 | | -x+63=45 |